
Witmate Engine
Users Manual

Version 603

mate of your wit

mate of your wit

Users’ Manual 1

Contents
Introduction ...4

Features..4
Typical Applications...7

Typical steps to use Witmate engine..9
Configuration...10
Application Program Interface (API) ...11

WitME API ...11
JSR-94 API ...15

SOAP Interface..18
Configurations..18
Methods ..18

setWitmateRulebaseEndpoint ..18
synchronizeRulebase..19
registerRuleExecutionSet..19
deregisterRuleExecutionSet..20
createRuleSession ..20
releaseSession ..21
executeSession..21

Typical using scenario ...22
Systems with Rule base...22
Standalone without Rule base ..22

REST Interface ..23
Configurations..23
Methods ..23

OSGi Bundles ..25
Log system ...26

Log format ..26
Types of Logs..27
Open/Close Log ..29

Using Null logger ...29
Log4J approach ..29
Control by type ...29
Control by LogicSet..30

Simple Logic language (SL) ..31

mate of your wit

Users’ Manual 2

First look...31
Important concepts ..32

Non-process language ..32
Variable assignment...32

Basic elements ...32
Commands ..32
Comments...33
Names ...33
Semicolon..33
Constants..34
Variables ...34
Operators ..34
Expression ..35
Functions / operators ...35

Grammar ..35
Commands..36

LogicSet...37
Def ...38
Let ...40
If Then...41
Publish ..42
Do ..42
Return/ReturnC..43
Fire ..44
Else..44
Cut...44

Logic set Examples ..46
Simple Logic Markup Language (SLML) ..47

SLML Format...47
First Look..47
Schema of SLML...47

SLML Parser ..47
Optimize logic set ...47

WitDebugger ..49
Usages...49
Commands..49
Typical using scenario ...51

How to...52

mate of your wit

Users’ Manual 3

System ..52
How to open/close cache...52
How to define customized operators/functions ..52
How to call a outside process...53

Using do command ...53
Using variable computation...53
Pay attention:..53

SL & SLML...54
How to define experts’ vocabularies..54
How to use SLML validation...54

End user tools...55
How to use sl2slml and slml2ws tools ..55

Performance tuning ...55
How to get better logic optimization...55
How to save the log4j execution time ...55
How to use other languages in logic ...55

mate of your wit

Users’ Manual 4

Introduction
Witmate engine is a pure java logic engine, which is called as Rule engine in some
application areas as CRM (Customer Relation Management), for wide usages from mobile
devices logic execution to enterprise high-end business rule matching.
Delivering their business experts logic into IT system quickly and updating these logics time
to time are an important approach to keep their competitions for enterprises. And it is a new
challenge to enterprises’ IT support teams. Witmate engine is the solution to solve the hard
problem for enterprise and their IT infrastructures.
As a widely usable logic engine, its application areas are not limited as talked above. From
general point of view, Witmate engine is a development tool to help application fields’ experts
and programmers focusing on their own fields and cooperating together smoothly.

Features

l Mobile/Home network environment ready
Witmate engine is a mobile environment ready logic engine. “Mobile ready” is not only figure
out that it is executable on J2ME and OSGi platform, but also support architecture to create,
manage and update logics through mobile networks.
Witmate engine exposes a JSR-94 like API on J2ME platform. This makes it easy to
integrate mobile devices into enterprise system, and lower down the cost to manage and
develop systems on both of mobile and typical enterprise platform.

l Web services/SOA ready
All components of Witmate engine are SOAP ready. So it's very easy to deploy Witmate
engine into Web services/SOA systems.

l JSR-94 compatibility
Witmate engine is compatible with JSR-94, the standard of rule engine of java. Witmate
engine is the only one engine in the world that supports both of J2ME and JSR-94. There is a
API that is very close with JSR-94 in Witmate core engine, so experiences of JSR-94 can be
used easily to code with core engine in mobile environment, and size up smoothly from
mobile to enterprise environment at anytime you need.
A JSR-94 Witmate engine cover layer implemented the standard JSR-94 in J2SE
environment for enterprise applications. This layer passed all test cases of JSR-94 TCK
(Java Rule Engine API Test Compatibility Kit).

l Multiple logic description formats
Not like other engines that offer only one logic description language to users to create logics,

mate of your wit

Users’ Manual 5

as another leading advantage, Witmate engine offers 3 description formats to users for
different targets and environments. They are:
1. Simple Logic Language (SL): An easily understandable, human friendly language to

create logics. Without strange expressions as Prolog or other logic expression languages,
Witmate engine just uses IF-THEN to express logic. Anybody can start to use in minutes.
SL also offers other expressions as vocabulary definitions and variables definitions to
make the communications between IT team and field experts more smoothly.
This is the best format to create and modify logics by experts themselves or together
with IT team.

2. Simple Logic Markup Language (SLML): A XML format of logics. SLML is designed to
get balance of readability and compact XML string size, so it is not cost to send SLML
through a mobile network.
This is the best format to create/manage logics by computers, and exchange logics
among computers or software components.

3. WitStream (WITS/WS): A text based stream format of logics. This is Witmate engine
special format; no another engine offers this type format of logics. This format is very
compact, normally one of third of length of XML format. As a very compact text stream,
WitStream can be exchanged through any mobile or fixed networks, can be saved into
any storages as Data Bases, Files or stick memories, or even printed on paper as back
up (Paper back up still is the last approach for very important data as forms of
insurances).
WitStream is the best format to exchange/broad cast logics through mobile networks,
and save/retrieve logics to/from database or any storage.

l Logic Set Firing
Logic sets in Witmate engine can fire other logic sets at runtime. This makes it easier to
describe complex logics.
With logic set firing, Witmate engine can execute logics as status machine to solute much
more complex problems than normal single logic set approach.

l High performance
Leveraging advantaged system structure and logic optimization, Witmate engine offers high
performance on mobile and enterprise environment. Over 200 thousands compares and
processes can be done in one second by Witmate engine even on a typical thin PC (1GHz
CPU, 1G RAM).
Concerning the fact that any cache system has its limit for certain environment, Witmate
engine has an optional cache component. It is possible to get high performance for any
environments by configuring and open/close Witmate engine cache.

mate of your wit

Users’ Manual 6

l Small footprint
Very small memory and CPU usage makes Witmate engine can execute on very weak mobile
devices.

l Scalability
Witmate engine system is separated into several JAR files; so different target applications
only deploy the parts they need.
To deploy Witmate engine easily on enterprise environment, an all in one JAR file is offered.

mate of your wit

Users’ Manual 7

Typical Applications

Mobile logic engine and logic update/broadcast system
As shown below, Witmate engine can be used to manage and execute logics in an Enterprise
+ Mobile + Home network environment.

l Core Engine with JSR-94 Cover plus SLML parser and SL compiler construct a logics
creation and verification subsystem. Experts/Programmers create logics by SL, and load
logics into engine by SL compiler and SLML parser through standard JSr-94 interface.
Then executing logics in core engine verify these logics.

l Verified logics will be load into logic storage subsystem that is construed by Core Engine
with JSR-94 cover and SLML Parser, WS reader, WS writer by SLML format, and be
saved into storages by WitStream format.

l An exchange and broadcast subsystem exchange logics with other enterprise servers,
and broadcast logics into clients from PC to Mobile devices, using SLML and WitStream.
According to Clients power, deploy different components (JARs) into different type
clients.

Business Rule engine
This is the typical usage of JSR-94 compatible engines. For example a CRM (Customer
Relation Management) rule engine decides what services should be served to the concurrent

mate of your wit

Users’ Manual 8

accessing customer according to this customer’s profiles as input.

Application Logic creation/management/execution system
This is a very wide usage of Witmate engine. Because of high performance, small footprint
and multiple logic formats, Witmate engine can be used as logic engine in any applications,
from mobile gaming, Web site, or even data reformat programs. Basically, any situation
there are requirements of communicating logics with other members or changing logics
separated with codes.

mate of your wit

Users’ Manual 9

Typical steps to use Witmate engine

1. Create logics by Simple Logic language (SL) with an editor
2. Load SL created into engine with SL compiler.
3. Test/Debug with WitDebugger.
4. (Optional) Export logics to SLML using sl2slml tool, and send logics to other systems

with SOAP/Web services
5. (Optional) Export logics to WitStream with core engine API or slml2ws tool, and save

logics into Witmate Rule base (Refer Witmate rule base users manual).
6. Deploy Witmate engine with required components into execution environment, and use

it!

mate of your wit

Users’ Manual 10

Configuration
Witmate engine is a total configurable logic engine to fit different environments and
application requirements. For most environments, default values of configurations are work
well. To deal with very special requirements, follows approaches below to configure Witmate
engine.
There are tow ways to configure Witmate engine, changing values of keys in
Witmate.core.Configuration class, or using Witmate engine
Witmate.core.ConfigManager.configure method to load configurations from a stream (File,
mobile network stream or any input can be read as InputStream).
For details of configuration keys, refer java doc of Witmate.core.Configuration and
Witmate.properties file.

mate of your wit

Users’ Manual 11

Application Program Interface (API)
WitME API

WitME API is a JSR-94 like API exposed by Witmate core engine. It is executable on J2ME
and any JRE/JDK.
Because the WitME API is so similitude with JSR-94, the JSR-94 documents
(http://www.jcp.org/aboutJava/communityprocess/review/jsr094/) and Witmate engine
JavaDoc include enough information about usage of WitME API.
1. Differentiations between WitME and JSR-94, Since limits of J2ME,

Ø Change all Map parameters to Hashtable
Ø Change all List parameters to Vector
Ø Can't set ClassLoader in RuleServiceProvider
Ø Does NOT support the method createRuleExecutionSet that has AST parameter in

LocalRuleExecutionSetProvider
Ø Deleted the class RuleExecutionSetProvider

2. Limit of Witmate engine
Ø Do not support retrieve Rules from RuleExecutionSet/RuleSession

3. Extension of Witmate engine
Ø Extend methods in LocalRuleExecutionSetProvider to get an array of

RuleExecutionSet to load more than one logic set into engine at one time.
Ø Extend method in RuleAdministrator to deregister one RuleExecutionSet from one

URI binding.
Ø Extend a lightweight session provider to simple client codes. One call to

LightProvider. createRuleSession replaces all callings from
registerRuleServiceProvider to createRuleSession of standard JSR94. Example:

4. Start logic set decision
Witmate engine can bind more than one logic set to a URI, the logic set to start match is
decided by:
1. Look for Wit-Start-SLName property in property parameter of RuleAdministrator.

createRuleSession method
2. If there is not this property, and more then one logic set are loaded, look for logic set

name by these steps:
I. Equals “start” (insensible)
II. Equals “begin” (insensible)

RuleSession rs=LightProvider.createRuleSession(uri, new Hashtable(), input_stream,
RuleRuntime.STATELESS_SESSION_TYPE);

Vector result = ((StatelessRuleSession)rs).executeRules(m_vInVars);
rs.release();
LightProvider.deregisterRuleExecutionSet(uri,m_hProp);

mate of your wit

Users’ Manual 12

III. Equals “main” (insensible)
IV. Starts with “start” (insensible)
V. Starts with “begin” (insensible)
VI. Starts with “main” (insensible)
VII. Includes “start” (insensible)
VIII. Includes “begin” (insensible)
IX. Includes “main” (insensible)

3. If cannot found, uses the first logic set loaded.
1. Input format decision

Because Witmate engine has 3 formats of logics, it uses these steps to decide input
format:
1. Look for Wit-SL-InType property in createRuleExecutionSet methods of

LocalRuleExecutionSetProvider. Value should be String “1”, “2” or “3”.
1 Compile as Simple Logic language (SL)
2 Parse as Simple Logic Markup Language (SLML)
3 Read as WitStream

2. If no this property, Witmate engine try to decide input type by contents of input
Begin with <?xml… Parse as Simple Logic Markup Language (SLML)
Begin with WITS Read as WitStream
Other situations Compile as Simple Logic language (SL)

2. Runtime input
Witmate engine support 2 ways to input at runtime in both of stateless and stateful
session.
1. Input any instances of class. This is the JSR-94 approach. The input values will be

assigned into variables which has same class type defined by Def command in SL or
c attribute of SLML..

2. Input instances of Witmate engine .core.kernel.elements.ConstantVariable. This is
extension of Witmate engine. Inputs and variables in logic set linked by variable
name, so it is possible that input more than one same class inputs.

3. Results output
Witmate engine support 2 ways to return results at runtime in both of stateless and
stateful session.
1. Output instances of result values. This is JSR-94 approach. Client code need identify

results by sort or class of results.
2. Output instances of Witmate engine .core.kernel.elements.Constant or Witmate

engine .core.kernel.elements.ConstantVariable. This way makes identify results
easier. Refer “Return/ReturnC” command segment for details.

4. Important WitME classes: These are some important class of WitME, refer their

mate of your wit

Users’ Manual 13

JavaDoc for details.
Ø Witmate engine .core.ConstantValues: This class defines many constant values to

help client coding.
Ø Witmate.core.Configuration: This class defines all configurations of Witmate engine,

change them to configure Witmate engine at runtime.
5. Multiple thread support

To support multiple thread environments, threads need to:
Ø Generate separated execution session for each thread
Ø Manage URI of execution set(s)

• Using unique URI, if want to separate logic sets of threads
• Figuring out certain URI for certain thread logics.

mate of your wit

Users’ Manual 14

Examples
This is a test case of Witmate core engine with LS logics format.

Using lightweight session provider to get a simpler client code:

String test="#This is a simple test LS file for with operators ¥n" +
"LogicSet LSetMainOpSlT1 ; #a simple logic set.¥n" +
" Def Integer V1,V2; Let V1 = 10 + 20 - 5¥n" +
" IF V1>3 THEN Publish V1; Let V2=V1*2; ReturnC V2 ";

ByteArrayInputStream bis=new ByteArrayInputStream(test.getBytes());
ByteArrayOutputStream bsOut=new ByteArrayOutputStream();
OutputStreamWriter streamOut=new OutputStreamWriter(bsOut);
Hashtable prop=new Hashtable();
prop.put(ConstantValues.SLML_OUT_KEY, streamOut);
StatelessRuleSession statelessRuleSession=

(StatelessRuleSession)LightProvider.createRuleSession(Thread.currentThread().hashCode(), prop, bis,
RuleRuntime.STATELESS_SESSION_TYPE);

System.out.println(bsOut.toString());//Print out SLML.
bis.close();
//Execute the rules without a filter.
Vector results = statelessRuleSession.executeRules(null);
//Release the session.
statelessRuleSession.release(); ….

String RULE_SERVICE_PROVIDER = "Witmate engine ";
Class provider=Class.forName("Witmate engine .core.kernel.ServiceProvider");
//Get the rule service provider from the provider manager.
RuleServiceProviderManager.registerRuleServiceProvider(RULE_SERVICE_PROVIDER,provider);
m_serviceProvider= RuleServiceProviderManager.getRuleServiceProvider(RULE_SERVICE_PROVIDER);
//get the RuleAdministrator
m_ruleAdministrator = m_serviceProvider.getRuleAdministrator();
String test="#This is a simple test LS file for with operators ¥n" +

"LogicSet LSetMainOpSlT1 ; #a simple logic set.¥n" +
" Def Integer V1,V2; Let V1 = 10 + 20 - 5¥n" +
" IF V1>3 THEN Publish V1; Let V2=V1*2; ReturnC V2 ";

ByteArrayInputStream bis=new ByteArrayInputStream(test.getBytes());
ByteArrayOutputStream bsOut=new ByteArrayOutputStream();
OutputStreamWriter streamOut=new OutputStreamWriter(bsOut);
Hashtable prop=new Hashtable();
prop.put(ConstantValues.SLML_OUT_KEY, streamOut);
//parse the logic set
RuleExecutionSet res=
m_ruleAdministrator.getLocalRuleExecutionSetProvider(null).createRuleExecutionSet(bis, prop);
System.out.println(bsOut.toString());//Print out SLML.
bis.close();
//register the RuleExecutionSet with an unique URI.
m_ruleAdministrator.registerRuleExecutionSet(Thread.currentThread().hashCode(), res, null);
//Get a RuleRuntime and invoke the rule engine.
RuleRuntime ruleRuntime = m_serviceProvider.getRuleRuntime();
//create a StatelessRuleSession
StatelessRuleSession statelessRuleSession = (StatelessRuleSession) ruleRuntime.createRuleSession(uri,

new Hashtable(), RuleRuntime.STATELESS_SESSION_TYPE);
//Execute the rules without a filter.
Vector results = statelessRuleSession.executeRules(null);
//Release the session.
statelessRuleSession.release();
TestCase.assertEquals(1, results.size());
TestCase.assertEquals(new Integer(50), ((ConstantVariable)results.elementAt(0)).value);
TestCase.assertEquals("V2", ((ConstantVariable)results.elementAt(0)).name);
TestCase.assertEquals(Witmate engine .core.ConstantValues.DT_INT,

((ConstantVariable)results.elementAt(0)).type);

mate of your wit

Users’ Manual 15

JSR-94 API

WitPeel.jar implements JSR-94 standard, and passed the JSR-94 TCK. Refer JSR-94
document (http://www.jcp.org/aboutJava/communityprocess/review/jsr094/) and Witmate
engine JavaDoc for usages.
Differentiations between WitPeel and JSR-94
1. Limits of Witmate engine

Ø Do NOT support methods createRuleExecutionSet that has AST parameter and
URI paramater in RuleExecutionSetProvider

Ø Does NOT support the method createRuleExecutionSet that has AST parameter in
LocalRuleExecutionSetProvider

2. Extension of Witmate engine
Ø Extend methods in LocalRuleExecutionSetProvider to get an array of ExecutionSet

to load logic sets one time into engine.
Ø Extend methods in RuleAdministrator to regsiter/deregister by RuleExecutionSet

or array of RuleExecutionSet.
3. Start logic set decision

Witmate engine can bind more than one logic set to a URI, the logic set to start match is
decided by:

1. Look for Wit-Start-SLName property in property parameter of
RuleAdministrator. createRuleSession method

2. If there is not this property, and more then one logic set are loaded, look for
logic set name which is:
I. Equals or starts with “start” (insensible)
II. Equals or starts with “begin” (insensible)
III. Equals or starts with “main” (insensible)
IV. Includes “start” (insensible)
V. Includes “begin” (insensible)
VI. Includes “main” (insensible)

3. If cannot found, uses the first logic set loaded.
4. Input format decision

Because Witmate engine has 3 formats of logics, it uses these steps to decide input
format:
Ø Look for Wit-SL-InType property in createRuleExecutionSet methods of

LocalRuleExecutionSetProvider. Value should be String “1”, “2”, “3” or “4”.
1 Compile as Simple Logic language (SL)
2 Parse as Simple Logic Markup Language (SLML)
3 Read as WitStream

mate of your wit

Users’ Manual 16

4 Parse as Simple Logic Markup Language (SLML) with slml
validation

Ø If no this property, Witmate engine try to decide input type by contents of input
Begin with <?xml… Parse as Simple Logic Markup Language (SLML)
Begin with WITS Read as WitStream
Other situations Compile as Simple Logic language (SL)

5. Runtime input
Witmate engine support 2 ways to input at runtime in both of stateless and stateful
session.
1. Input any instances of class. This is the JSR-94 approach. The input values will be

assigned into variables which has same class type defined by Def command in SL or
c attribute of SLML.

2. Input instances of Witmate engine .core.kernel.elements.ConstantVariable. This is
extension of Witmate engine. Inputs and variables in logic set linked by variable
name, so it is possible that input more than one same class inputs.

6. Results output
Witmate engine support 2 ways to return results at runtime in both of stateless and
stateful session.
1. Output instances of result values. This is JSR-94 approach. Client code need identify

results by sort or class of results.
2. Output instances of Witmate.core.kernel.elements.Constant or

Witmate.core.kernel.elements.ConstantVariable. This way makes identify results
easier. Refer “Return/ReturnC” command segment for details.

7. Multiple thread support
To support multiple thread environments, threads need to:
Ø Generate separated execution session for each thread
Ø Manage URI of execution set(s)

• Using unique URI, if want to separate logic sets of threads
• Figuring out certain URI for certain thread logics.

mate of your wit

Users’ Manual 17

Examples
This is a test case of WitPeel with SL logic format.

String test="LogicSet LSetClassVarTest ResultCount 1¥n" +
" Def obj c,vector; Def int i; " +
" Def java.lang.Character char¥n" +
" Let c=char;"+
" :1:If i<0 OR c=char Then" +
" :5:do Vector$Add(vector,¥"5¥");:2:do Vector$Add(vector,¥"2¥")" +
" return c, char, vector";

ByteArrayInputStream bis=new ByteArrayInputStream(test.getBytes());
ByteArrayOutputStream bsOut=new ByteArrayOutputStream();
OutputStreamWriter streamOut=new OutputStreamWriter(bsOut);
prop.put(Configuration.KEY_SL_MAX_ERR_COUNT,"1");
//parse the ruleset
RuleServiceProvider serviceProvider = (RuleServiceProvider)Class.forName("Witmate
engine .core.kernel.ServiceProvider").newInstance();
RuleExecutionSet res =
serviceProvider.getRuleAdministrator().getLocalRuleExecutionSetProvider(null).createRuleExecutionSet(
bis, prop);
bis.close();
//register the RuleExecutionSet
String uri = res.getName();
serviceProvider.getRuleAdministrator().registerRuleExecutionSet(uri, res, null);
//Get a RuleRuntime and invoke the rule engine.
RuleRuntime ruleRuntime = serviceProvider.getRuleRuntime();
Character ch=new Character('C');
ConstantVariable V1=new ConstantVariable();
V1.name="i";
V1.type=ConstantValues.DT_INT;
V1.value=new Integer(100);
ConstantVariable vector=new ConstantVariable();
vector.name="vector";
vector.type=ConstantValues.DT_OBJ;
vector.value=new Vector();
Vector in_vars=new Vector();
in_vars.addElement(ch);
in_vars.addElement(V1);
in_vars.addElement(vector);
//create a StatelessRuleSession
StatelessRuleSession statelessRuleSession = (StatelessRuleSession) ruleRuntime.createRuleSession(uri,

new Hashtable(), RuleRuntime.STATELESS_SESSION_TYPE);
Vector results = statelessRuleSession.executeRules(in_vars);
//Release the session.
statelessRuleSession.release();
TestCase.assertEquals(3, results.size());
TestCase assertEquals(ch, results.elementAt(0));
TestCase.assertEquals(ch.charValue(), ((Character)results.elementAt(0)).charValue());
TestCase.assertEquals(ch, results.elementAt(1));
TestCase.assertEquals(ch.charValue(), ((Character)results.elementAt(1)).charValue());
TestCase.assertEquals(vector.value, results.elementAt(2));
TestCase.assertEquals("2", ((Vector)results.elementAt(2)).elementAt(0));
TestCase.assertEquals("5", ((Vector)results.elementAt(2)).elementAt(1));

mate of your wit

Users’ Manual 18

SOAP Interface
This SOAP interface exposes Witmate engine functionalities to any Web services compatible
systems. Current version only supports stateless rule sessions.

Configurations

There is a configuration file in root of classes’ folder. Configurations include:
witmate_rulebase_endpoint
Set the rule base SOAP interface end point used by this Engine SOAP interface. This is a
static way with same function of method setWitmateRulebaseEndpoint.

witmate_rulebase_synchronize
Set this Engine SOAP end point to synchronize with its rule base. This is a static way with
same function of method synchronizeRulebase.

Methods

All methods are list below:
setWitmateRulebaseEndpoint

Definition
void setWitmateRulebaseEndpoint(String endpoint)

Parameters
endpoint: A string of URL to figure out the rule base SOAP interface end point used by this
Engine SOAP interface

Function
Set the rule base SOAP interface end point used by this Engine SOAP interface

Example
your_proxy.setWitmateRulebaseEndpoint(“http://localhost:8080/WitmateRulebase/Rules”);

Comments
This method must be called before all other methods calls for most case besides of using the
local configuration by file witmate.properties in class folder of Web SOAP application. If
there is not any rule base installed in your system, you need not to call this method.

mate of your wit

Users’ Manual 19

synchronizeRulebase

Definition
void synchronizeRulebase(String engine_endpoint)

Parameters
engine_endpoint: Set this Engine SOAP end point to synchronize with its rule base.

Function
Set this Engine SOAP end point to synchronize with its rule base.

Example
your_proxy. synchronizeRulebase
(“http://localhost:8080/WitmateEngineWS/services/BasicRunner”);

Comments
This method must be called before all other methods calls for most case besides of using the
local configuration by file witmate.properties in class folder of Web SOAP application. If
there is not any rule base installed in your system, you need not to call this method.

registerRuleExecutionSet

Definition
void registerRuleExecutionSet(String uri, Map properties, String in)

Parameters
uri: A string of URI execution set registered to.
properties: Register properties (Refer segment of Application Program Interface)
in: The logic/rule description by SL, SLML or WitStream

Function
Register logic/rule sets by an URI.

Example
your_proxy. registerRuleExecutionSet (“your.logic.logic1”, new HashMap(0), your_logics);

Comments
For systems without Rule base, this method must be called before creating rule sessions.
You need not call this method for a system with rule base. In a system with Rule base, this
method has higher privilege than Rule base. This means that rule sets registered by this

mate of your wit

Users’ Manual 20

method will not be searched in Rule base.

deregisterRuleExecutionSet

Definition
void deregisterRuleExecutionSet (String uri, Map properties)

Parameters
uri: A string of execution set URI.
properties: Deregister properties (Refer segment of Application Program Interface)

Function
Deregister logic/rule sets by an URI.

Example
your_proxy. deregisterRuleExecutionSet (“your.logic.logic1”, new HashMap(0));

Comments
Deregister execution sets that are registered by certain URI. You need not call this method
for a system with rule base. In a system with Rule base, this method will force engine to
reload execution sets from Rule base when a new rule session with same URI is created.

createRuleSession

Definition
String createRuleSession(String uri, Map properties)

Parameters
uri: A string of execution set URI.
properties: Creation properties (Refer segment of Application Program Interface)

Return
Session key

Function
Create a stateless rule session of an URI.

Example
String session_key= your_proxy.createRuleSession(“your.logic.logic1”, new HashMap(0));

mate of your wit

Users’ Manual 21

Comments
For a system with Rule base, this method will make engine to load logic/rule sets from Rule
base.
For a system without Rule base, this method will throw exception, if
registerRuleExecutionSet method is not called before.

releaseSession

Definition
void releaseSession(String session_key)

Parameters
session_key: rule session key created by method createRuleSession.

Function
Release a stateless rule session.

Example
your_proxy.releaseSession (“your.logic.logic1”);

Comments
Release sessions that you do not use it in long term, to save system resources.

executeSession

Definition
Vector executeSession(String session_key, Variable[] input_vars)

Parameters
session_key: A rule session key created by method createRuleSession.
input_vars: Input variables that are instances of class Variable

Return
Results list, values or instances of Variable according to results are returned by Return or
ReturnC command.

Function
Create a stateless rule session of an URI.

Example

mate of your wit

Users’ Manual 22

Vector results=your_proxy.executeSession(session_key, vars);

Comments
This is the key method by which logic/rule sets are matched.

Typical using scenario

Systems with Rule base

1. Call setWitmateRulebaseEndpoint
2. Call createRuleSession to get session key
3. Call executeSession with session key to match rules
4. Process results
5. Recall executeSession with new input, if need
6. Call releaseSession with session key

Standalone without Rule base

1. Call registerRuleExecutionSet
2. Call createRuleSession to get session key
3. Call executeSession with session key to match rules
4. Process results
5. Recall executeSession with new input, if need
6. Call releaseSession with session key
7. Call deregisterRuleExecutionSet

mate of your wit

Users’ Manual 23

REST Interface
This REST (Representational State Transfer) interface is a high performance replacer of
SOAP. A REST interface speed up engine accesses from 30% to 60%.
Right now, REST interface does not support functions of SOAP as below:
5. Runtime rule RuleExecutionSet register
6. Rule base synchronization
7. Rule session variables
8. createRuleSession with properties

Configurations

REST interface can be configured through <init-param> tag in web.xml. Configurations
include:
witmate_rulebase_endpoint
Set the rule base SOAP interface end point used by this Engine REST interface. This is a
static way with same function of method setWitmateRulebaseEndpoint.

Methods

A simple methods list can be get by access root of REST web application as http://<Host
name>:<port number>/WitmateEngineREST/. Same contents are list below:

setWitmateRulebaseEndpoint
p1=<End point of
witmate rule base>

Set the SOAP
end point of
Witmate Rule
base.

OK Error messages

createRuleSession uri=<Logic set URI>
Create a rule
session of
certain logicset

<rule
session
ID>

Error messages

executeSession

sid=<rule session ID>

vars=<XML according

to

witmate_variable.xsd>

Execute a rule
session with
input variables

Results
separated
by line
break

Error messages

attachGlobalVariables uri=<Logic set URI>

vars=<XML according

Attach global
variables

OK Error messages

mate of your wit

Users’ Manual 24

to

witmate_variable.xsd>

releaseSession sid=<rule session ID>
Release a rule
session

OK Error messages

detachGlobalVariables uri=<Logic set URI>

Detach global
variables
attached with
certain logic
set

OK Error messages

* Italic : Optional

mate of your wit

Users’ Manual 25

OSGi Bundles
OSGi is a standard of mobile, car and home networks (http://www.osgi.org/). Witmate engine
supports OSGi standard too, and exposes bundles of Witmate engine. There are 2
approaches to use Witmate engine in OSGi system:

① Include Witmate engine jars which are needed into any bundles. Because
Witmate engine works well on any OSGi environments, it’s very easy to include any
jars of Witmate engine as inside lib in bundles.

② Use Witmate bundles. There are 3 standard Witmate bundles in WitSDK:
1. WitCoreBundle: Include WitCoreAll.jar and SLMLParser.jar. Works on any OSGi

environment.
2. WitSLCompilerBundle: Bundle of SLCompiler. Need this bundle to compile SL

format input. Works on any OSGi environment.
3. WitLoggerBundle: Use OSGi log service to output Witmate engine log. Need this

bundle to output log into OSGi system or other Bundles. Works on OSGi
environment that installed log services. Witmate engine log level is debug, so the
OSGi environment log level need set to debug to get log output.

There is an example Bundle in WitSDK.
A typical bundles install/start sequence to use Witmate bundles is:
Bundles Start Level Mode Comments
Configuration management
service

2 Start Optional.
Need for log.

Log service 2 Start Optional.
Need for log.

WitLoggerBundle 3 Start Optional.
Need for log.

WitSLCompilerBundle 5 Install Optional.
Need for SL logics input.

WitCoreBundle 6 Start
Client Bundle using Witmate
engine

7 Start/Install

mate of your wit

Users’ Manual 26

Log system
Log is the important tool to debug, trace and analysis logic sets and theirs executions.
Witmate engine offers a total configurable log system based on Log4j2ME, a J2ME edition of
Log4J, for j2ME and Log4j for J2SE/J2EE.

Log format

General Format
Witmate engine Logs follow a general format:

WITLOG(information type)[LogicSet Name]{Type special format}’EOL’
All Witmate engine Logs begin with WITLOG to make it easy to separate Witmate engine
Logs with other Logs in one Log file. information type is a String to figure out what this Log
is about. LogicSet Name is the name of LogicSet that logged out this Log. Type special
format is changeable for each type of Log. EOL is the break of line.
All information type and their details refer every type of Log in Types of Logs segment below.
These are the formats of some standard Log elements
Variables

[var_name:var_type:value] or [var_name:?]
The first format is for variables that has value. The second is for non value variable or the
Log type that need not Log out the value of variables.
var_name is the name of this variable.
var_type is a character about assignment type of this variable. The possible values are:
Character Assignment type
c This Variable is assigned by a constant. Like:

Let a=1
r This variable is assigned by referring to

another Variable. Like: Let a=b
e This variable is assigned by an expression.

Like: Let a=1+b
Value is the values of this variable.

Constants
[value]

Value of constant

Expressions
[operator:parameter list]

operator is the operator full class name, parameter list is the list of parameters input to this

mate of your wit

Users’ Manual 27

operator.
Examples:

This Log figure out that a LogicSet named slmain started with inputs in_a with value ‘L’ and
in_b with value 10.

Types of Logs

Witmate engine classify Logs into 4 types which can be open/close independently, they are:
8. Process Log (ProcLog)

Log out the process trace of LogicSets Start/End and important process:
Information type Meaning Format(in one line)
LSet Start A LogicSet started WITLOG(LSet Start)

[StartedLogicSetName]
{InputVariableList}

Fire LSet Fired a LogicSet WITLOG(Fire LSet)
[CurrentLogicSetName]
{FiredLogicSetName
InputVariableList }

LSetReturn Return from a LogicSet WITLOG(LSetReturn)
[LogicSetName]{ReturnVariab
le/ValueList}

Refer LSet Refer a LogicSet WITLOG(Refer LSet)
[LogicSetName]{ReferredLogi
cSetName}

OutRefLSet Got out from a referred LogicSet WITLOG(OutRefLSet)
[LogicSetName]{ReferredLogi
cSetName}

PublishVar Published a variable into Public zone. WITLOG(PublishVar)
[LogicSetName]{PublishedVar
iablesList}

Then Start A then command block are stared.
Clarify what commands are executed
by a then command block.

WITLOG(Then Start)
[LogicSetName]
{-------------------------------}

Else Start An else command block are stared.
Clarify what commands are executed
by an else command block.

WITLOG(Else Start)
[LogicSetName]
{-------------------------------}

WITLOG(LSet Start)[slmain]{[in_a:L][in_b:10]}

mate of your wit

Users’ Manual 28

ThenFailed Failed to execute a then/else command
block

WITLOG(ThenFailed)
[LogicSetName]
{ReasonOfFailure}

PTime LS Performance Log. How many time
units are used for a Logic fire/refer or a
logic execution.

WITLOG(PTime LS)
[LogicSetName] {Number
unit}

PTime All Performance Log when a LogicSet
execution finished. Log out total time
unit used and time percentages of
every LogicSet used. This is helpful to
figure out which LogicSet should be
focused on to rewrite to get better
performance.

WITLOG(PTime All)
[LogicSetName]{TotalNumber
unit: LogicSetsTimeUnitList}

9. Compare Log
Log out all compares trace and result

Information type Meaning Format
(in one line besides
ExceptionMessage)

Cmpr Start A compare, logic match, started WITLOG(Cmpr Start)
[LogicSetName] {---------------}

CompareRlt Result of a compare WITLOG(CompareRlt)
[LogicSetName]{Result(Operator)
ParameterList}
Result: is T or F, T is True.

Cmpr Excp Thrown an Exception when match a
compare.

WITLOG(ThenFailed)
[LogicSetName]
{ExceptionMessage}

CompareEnd End of a compare WITLOG(CompareEnd)
[LogicSetName]
{========(Result)====}
Result: is TRUE or FALSE.

CchCmprPut Put a compare result into Cache WITLOG(CchCmprPut)
[LogicSetName]
{CompareID:result}

CchCmprGOT Got a compare result form Cache WITLOG(CchCmprGOT)
[LogicSetName]
{CompareID:result}

mate of your wit

Users’ Manual 29

10. Compare Fail Log
Normally, Compare Log above explained only log out the compares succeeded. If open
this Compare Fail Log, fail compares will be log out too.

11. Compute Log
Log of variables compute trace and result.

Information type Meaning Format(in one line)
ComputeRlt Result of one compute WITLOG(ComputeRlt)

[LogicSetName]
{VariableName =Value}

SkippedExp An expression compute is skipped.
Normally, the reason is part of this
expression got exception.

WITLOG(SkippedExp)
[LogicSetName]{Reason}

CachVarPut Put a variable compute result into
Cache

WITLOG(CachVarPut)
[LogicSetName]
{VariableName:Value}

CachVarGot Got a variable compute result from
Cache

WITLOG(CachVarGot)
[LogicSetName]
{VariableName:Value}

Open/Close Log

Using Null logger

For the best performance of a system which needs not log at runtime, Witmate engine offers
a null-logger.jar. This logger implements all logc4j interfaces which used by Witmate engine
with do nothing code. Just uses null-logger jar to replace logc4j.jar or log4j2me.jar that is
used by Witmate engine to switch to null logger.

Log4J approach

Witmate engine uses Log4J2ME and Log4J to log out Logs, and Witmate engine Logs are
Debug level. So setting Log4J log level to level higher than Debug is an approach to close
Witmate engine log.

Control by type

As explained above, these openXXX/closeXXX methods in Witmate.core.kernel.Logger can
open/close Logs by log type. For example: Logger.openProcLog(); will open process logs.

mate of your wit

Users’ Manual 30

Control by LogicSet

For complex logics, open or close the Logs of a certain LogicSet is useful. The methods
openXXX/closeXXX with LogicSet parameter can use to control Logs by LogicSet.
For example:
Close Process log of lsA LogicSet, open other LogicSets.
Logger.openProcLog();
Logger.closeProcLog("lsA");

Open Process log of lsA LogicSet, close other LogicSets.
Logger.closeProcLog();
Logger.openProcLog("lsA");

mate of your wit

Users’ Manual 31

Simple Logic language (SL)
As one of logic describing format, Simple Logic language is a human friendly format fitting
to create/modify logics by fields’ experts and programmers.

First look

SL is designed to be understood / used easily by anyone. The well-known IF-THEN pattern is
used to describe logics in SL, and it includes expressions that make it easy to express logic
with application experts’ vocabularies.
This is a simple logic set that will return different result according to content of input_text.
input_text, input_1 and input_2 are inputs when run this logic set. Comments of SL are any
text start from ‘#’ to end of that line.

It is clear that the SL is very easy to understand, logics are described clearly even without
any comments about them. Below is the example code to run this logic set:

The in_stream should be an input stream from network connection, file, string or database.

String RULE_SERVICE_PROVIDER = "Witmate engine ";
Class provider=Class.forName("Witmate engine .core.kernel.ServiceProvider");
//Get the rule service provider from the provider manager.
RuleServiceProviderManager.registerRuleServiceProvider(RULE_SERVICE_PROVIDER,provider
);
serviceProvider=
RuleServiceProviderManager.getRuleServiceProvider(RULE_SERVICE_PROVIDER);
//get the RuleAdministrator
ruleAdministrator = serviceProvider.getRuleAdministrator();
RuleExecutionSet

res=ruleAdministrator.getLocalRuleExecutionSetProvider(null).createRuleExecutionSet(
in_stream, prop);

in_stream.close();
//Register the RuleExecutionSet
String uri = res.getName();
ruleAdministrator.registerRuleExecutionSet(uri, res, null);
//Get a RuleRuntime and invoke the rule engine.
RuleRuntime ruleRuntime = erviceProvider.getRuleRuntime();
//create a StatelessRuleSession
StatelessRuleSession

statelessRuleSession = (StatelessRuleSession) ruleRuntime.createRuleSession(uri, new
Hashtable(), RuleRuntime.STATELESS_SESSION_TYPE);

//Execute the rules without a filter.
Vector results = statelessRuleSession.executeRules(null);
//Release the session.
statelessRuleSession.release();

LogicSet FirstLS
 # Define variables type with Def command.
 Def int input_1, input_2, sum
 Def text input_text

 Let sum=input_1+input_2
 If input_text=”get sum” Then Return sum
 If input_text=”check” And input_1>input_2 Then Return “Bigger”

mate of your wit

Users’ Manual 32

About details of WitME API, refers the chapter of WitME API.

Important concepts

As a logic language, there are some concepts of SL that need to be understood before starting
to use it.
Non-process language

SL is NOT a process language, that means engine does NOT execute code following the order
by that the code are written. Not like Java, C++ or any process languages, SL just describe
logics, but the order of execution of this logics are decided by Witmate engine.
SL offers some language elements to control order of execution, as an extension of logic
language. Special for Then/Else blocks, commands in blocks will be executed following a
certain order. Refer If/Then command about details.
Variable assignment

Variables Scope
There are 5 scopes for variables in SL. Scopes have priority that variables with higher
priority can refer to variables with lower priority. To variables which have same name, the
value of variables is decided by the variable with highest priority. Below is the scope list by
the priority from high to low:
1. Input variables: Input at runtime
2. Block variables: Assigned in Then/Else block.
3. LS variables: Assigned in Logic Set out of Then/Else block
4. Referred variables: Assigned in Logic Set named LS1 out of Then/Else block that is

referred by another Logic named LS2. When firing LS2, variables that assigned in LS1
are in referred variables scope.

5. Public variables: Published by Publish command.
Variable Computation
l Variables of scopes besides of blocks are computed when they used by logic

As the “sum” variable, it defined by “Let sum=input_1+input_2”, but only when the
input_text=”get sum” logic is true, “sum” will be computed.
l Variables of block scope are computed according to their sort number order.
Refer Let command for details.

Basic elements

Witmate SL is free context language to describe logics. These are basic elements of it.
Commands

Basic functional part of SL is command. Words of commands and their parameters are
reserved by SL and can NOT be used as names in SL, they are: LogicSet, Cut, Def, Let, If,
Then, Else, End, Publish, Do, Fire, Return, ReturnC, Refer, ResultCount, CacheLevel,

mate of your wit

Users’ Manual 33

VarCacheSize, CompareCacheSize. All Commands are insensible. So all of CUT, cut, CUt,
cUt or more are parsed as Cut command.
Grammar and usage of commands will be introduced in segments below.
Comments

SL has two types of comments:
l To EOL comments are any text between character ‘#’ and end of line. These are

right examples:

This example will get compile error, because comment out the “Then” command

l Block comments are any text included end of line between two ‘##’ as:

Names

Names of SL must follow these limits:
l Characters are '_', '$', '.', '0-9', 'a-z' or 'A-Z'
l Can NOT start by '0-9', '$', or '.'

Semicolon

Semicolon is the separator between commands in one line. For example:

This format can be used to write simple logics more compactable and more commands on one
page to improve the readability of SL.

Def int V1 ## This is a
Block comments.##
Let V1=100+##15##9 ##The value of V1 will be 109##

Let A=1+3; Let B=A+C; If B>12 Then Return 1; If B>30 Then Return 2

 If input_text=”get sum” #get sum? Then
Return sum

 # Start a logic set
Define variables type with Def command.

 Def int input_1, input_2, sum #Define integer variables.

 Let sum=input_1+input_2 # Assignment
 If input_text=”get sum” #get sum?
Then #Get sum.
Return sum

mate of your wit

Users’ Manual 34

Constants

Constants format:
Format Type Example Comments
Numbers Integer

or
Long

100
-123456
+9876

Numbers with dot Float
or
Double

100.123
-0.5678
+100.5698

Any text around by
double quotation marks

Text “A text”
“A text with ¥¥¥” ”

Date/time format
around single quotation
marks

Date Refer below.

True or False Boolean true
faLse

Insensible

Support date formats:
l yyyy/MM/DD hh:mm:ss:SSS, yyyy/MM/DD hh:mm:ss:SSS TimeZone, yyyy/MM/DD

hh:mm:ss, yyyy/MM/DD hh:mm:ss TimeZone,
l yyyy/MM/DD hh:mm, yyyy/MM/DD hh:mm TimeZone, yyyy/MM/DD, yyyy/MM
l yyyy-MM-DD hh:mm:ss:SSS, yyyy-MM-DD hh:mm:ss:SSS TimeZone, yyyy-MM-DD

hh:mm:ss, yyyy-MM-DD hh:mm:ss TimeZone,
l yyyy-MM-DD hh:mm, yyyy-MM-DD hh:mm TimeZone, yyyy-MM-DD, yyyy-MM
l yyyyMMDDhhmmss, yyyyMMDDhhmmssTimeZone
Month and day lacked will be set to 1. Minute, second and millisecond lacked will be set to 0.
TimeZone is Time zone ID as GMT, PST or JST etc.
Example: 2005/1/1 12:33:00 PST, 2005-1-2 10:10, 20050101123300PST

Variables

Variables of SL must be defined by Def command, and follow the naming limits. Names of
Variables can NOT same as commands and true/false. Refer the “Variables assignment”
segment in “Important Concepts” chapter and Def command for details.

Operators

Witmate engine offers many operators for calculate and compare. And it’s possible to create
new operators by users. Besides of basic operators, other operators should be used as

mate of your wit

Users’ Manual 35

function format. Refer Expression segment below about basic operators definition.
Witmate engine offers operators in 3 packages:
l witmate.engine.opt in witcore.jar or witcore-all.jar: Normal operators
l witmate.engine.opt.ex in witopt-ex.jar: extended operators
l witmate.engine.opt in witpeel.jar: Normal operators on J2SE 1.4.1_02 or higher

platform
Details about operators refer Java Doc of these packages above.

Expression

There are 2 types of expression in Witmate engine: Compute expression and Compare
expression. Compute expression is used in variable assignment (Let command) to calculate a
variable. Compare expression is used in logic (If command) to check logics.

Compute Expression Compare Expression
Basic operators +, -, *, / <, >, =, <=, >=, <>, And, Or, Not
Functions or
Customized operators

Usable Usable

Type of Return All data types of SL Boolean

Functions / operators

Witmate engine treats functions as same as operators. To create a function is same as new
an operator. In this manual, functions, operators and customized operators figure out same
thing, besides of the special explain about basic operators.
About how to create a function or customized operator refer “How to define customized
operators/functions” topic in How to chapter.

Grammar

SL grammar is defined with Witmate engine BNF. The syntax of Witmate engine BNF is:
l {}: 0 to many; [] 1 to many; <>: 0 or 1; (): Must and only 1.
l All elements need more definition are start with _
l End items well known are included in ' '.
l Key words are words besides of 2 types of items above. All key words are insensible.
The BNF is:

mate of your wit

Users’ Manual 36

Commands

This segment explains all commands of SL one by one.
All of Space, Tab and End of Line are usable separator of items of commands. So all of below
code are OK:

SL ::= [_LogicSet]
_LogicSet ::= LogicSet _LogicSetName < Refer _ReferLogicSetNameList > < ResultCount ('-1' | ['0-9']) >
< _CacheParameters > < _TypeDef > < _CutNames > _LogicDefinition
_CacheParameter ::= < CacheLevel ('-1' | ['0-9']) > < VarCacheSize ('-1' | ['0-9']) > < CompareCacheSize
('-1' | ['0-9']) >
_TypeDef ::= Def _Type _VarFunName {, _VarFunName}
_VarFunName ::= _VarName | _FunctionName
_Type ::= _BasicType | 'java class name'
_BasicType ::= Int | Integer | Long | Float | Double | Real | Text | String | Str | Date | Bool | Boolean
| Object | Obj
_CutNames ::= Cut _FunctionName _FunctionName
_LogicDefinition ::= [_VarAssignment | _RuleDefinition] < Else _CommandsBlock < End > >
_ReferLogicSetNameList ::= _LogicSetName { ,_LogicSetName }
_VarAssignment ::= < _LetSort > Let _VarName = (_VarName | _Value | _Expression)
_LetSort ::= ':' _SortNumber ':'
_Expression::= _parameter { _BasicOperator _parameter }
_BasicOperator::= + | - | * | /
_parameter ::= _Value | _VarName | _Function
_Function ::= _FunctionName '(' < _FunParamList > ')'
_FunParamList ::= (_Value | _VarName | _Function) { , < _Value | _VarName | _Fucntion > }
_RuleDefinition ::= < _RulePriority ><'{' _RuleName '}'> If _LogicFormula Then _CommandsBlock < End
>
RuleName ::= ['a-z' | 'A-Z' | ''] { 'a-z' | 'A-Z' | '0-9' | '_' | '.' | '$' }
_RulePriority ::= ':' SortNumber ':'
_LogicFormula ::= _LogicItem { (AND | OR) _LogicItem }
_LogicItem ::= NOT '(' _LogicFormula ')' | _LogicFormula | NOT '(' _LogicAtom ')' | _LogicAtom
_LogicAtom ::= _parameter { _BasicCompare _parameter }
_BasicCompare ::= = | > | < | >= | <= | <>
_CommandsBlock::= { _VarAssignment } < _PublishCommand > < _DoCommand > (_FireCommand |
_ReturnCommand)
_PublishCommand ::= Publish _VarName {, _VarName}
_DoCommand ::= < _DoOrder > Do _Expression
_DoOrder ::= ':' _SortNumber ':'
_FireCommand ::= Fire _LogicSetName '(' < _FireParamList > ')'
_FireParamList ::= (_VarName) { , _VarName }
_ReturnCommand ::= (Return | ReturnC) < _ReturnParamList >
_ReturnParamList ::= (_Value | _VarName) { , (_Value | _VarName) }
LogicSetName ::= ['a-z' | 'A-Z' | ''] { 'a-z' | 'A-Z' | '0-9' | '_' | '.' | '$' }
VarName ::= ['a-z' | 'A-Z' | ''] { 'a-z' | 'A-Z' | '0-9' | '_' | '.' | '$' }
_Value ::= (_Number | _Text | _Date | _Boolean)
_Number ::= < + | - > ['0-9'] < .['0-9'] >
_IntegerNumber ::= < + | - > ['0-9']
_SortNumber ::= ['0-9']
_Text ::= '"' { 'Any Characters' } '"'
_Date ::= ''' DateText '''
_Boolean ::= (true | false)
FunctionName ::= ['a-z' | 'A-Z' | ''] { 'a-z' | 'A-Z' | '0-9' | '_' | '.' | '$' }
_EOL ::= ';' | 'End of Line' | 'End of File'
_Commnets ::= #{ 'any text' }('End of Line' | 'End of File')
_BlockComments ::= ##{ 'any text' | 'End of Line' }##

mate of your wit

Users’ Manual 37

LogicSet

Syntax:
LogicSet LogicSetName

Refer ReferLogicSetList
ResultCount IntegerNumber
CacheLevel IntegerNumber
VarCacheSize IntegerNumber
CompareCacheSize IntegerNumber

LogicSet is the command to start a logic set. All logic set must start with this command.
Every LogicSet must have a unique name in one execution session. If load two logic set with
same name, second one will replace the first.
Other parameters of LogicSet command are optional.
l Refer parameter figure out refer logic set by this one. ReferLogicSetList is logic sets

names separated by comma. When run this logic set, logics of these refer logic sets, If
commands, will be run at first, and variables assignments, Let commands, will be refer
if can not find assignment for a certain variable in this logic set. The feature of refer
logic sets is usable for some general logics and variable assignments referred by more
than one logic set. Refer logic set itself is not error, but it is not a normal usage of Refer
parameter.

l ResultCount parameter tells Witmate engine engine stop run this logic set after gotten
how many results. If not this parameter, as default, Witmate engine will go through all
logics of this logic set and get all possible results. Normal usage of this parameter is set
to 1 to tell Witmate engine get only one result from this logic set. Zero is a legal value,
but generally it is only for debug or test for a complex firing among logic sets. Set
ResultCount to 0 of one of these logic sets to test whether can get certain results. Any
integer is OK, so ranking results, as getting top 10 best results, are possible.

If input_text=”get sum” Then Return sum

 If input_text=”get sum”
Then Return sum

If input_text=”get sum”
Then Return sum

If
input_text
=
”get sum”
Then
Return
sum

mate of your wit

Users’ Manual 38

l CacheLevel parameter controls open/close cache for this logic set. 0 closes and any non
zero value opens cache for this logics set. Cache does not help to get high performance
for all types of logic sets. Going through a simple logic set logics may be take shorter
time to operate cache. Small devices may have not enough fast memory to cache. Default
value is 8, and this default value can be configured by changing configurations of
Witmate engine, refer Configuration chapter for details.

l VarCacheSize parameter set the cache size of variable. Witmate engine has to types of
cache: variable cache and compare cache. Variable cache caches the result of variable
assignments to save time to compute a same variable many times. Compare cache
caches the result of logic compares to save time to re-compare a same compare. To use
memory well for different environments and logics, it is required to control these cache
sizes. Both of the size of these caches can be controlled in SL. This parameter is the
number of variable will be cached, if over this number the variable less used will be
removed from cache. Default is unlimited.

l CompareCacheSize parameter controls the size of compare cache. As explained above,
his parameter can be used to use well limited memory in small devices. Default is
unlimited.

Examples:
A very simple example:

LogicSet LS_A
A full example:

LogicSet LS_big
Refer LS_A, LS_B, LS_C ResultCount 3
CacheLevel 1 VarCacheSize 30 CompareCacheSize 50

Def

Syntax:
Def Type NameList

Def is from “define” to define type of variables and functions.
Type is one of basic types or a java class full name.
Basic types are:
Type name Alias Java Type
Integer Int java.lang.Integer
Long java.lang.Long
Float java.lang.Float
Double Real java.lang.Double
Text String, Str java.lang.String

mate of your wit

Users’ Manual 39

Date java.util.Date
Bool Boolean java.lang.Boolean
Object Obj java.lang.Object
Type of class full name is for input variables that have not name, so to look for a certain
variable, must according to its class. This is the approach of JSR-94 to identify input values.
Witmate engine offers another more clear and powerful approach to identify input values
that is the input variable approach. The input values are set into an instance of Witmate
engine .core.kernel.elements.ConstantVariable with a unique name among this input values.
Logics look for certain value input by the name of variables. So input more than one same
class inputs is possible, for example, this situation is very normal that input customer
purchase total amount and tax rate into a logic set.
All variables is used in logic set must be defined with type by Def commands. Functions type
Def is optional. If SL compiler can access the class of certain function, compiler will get
function type by itself; otherwise Def command is needed for this function. This is feature
gives system developers a tool to separate runtime system and logic create/management
system by only deploying functions definition class/JAR files into runtime system and define
type of functions by Def command in SL.
Examples:

Def integer int1, int2
Def str strVar1
Def com.my.element.class1 cl1
Def text function1

mate of your wit

Users’ Manual 40

Let

Syntax:
: SortNumber : Let VariableName = ComputeExpression

Assign variables; figure out how to compute a variable.
SortNumber is optional. It has different meanings in and out Then/Else block. In Then/Else
block, it is the execution order of Let commands. All Let commands without sort number will
be executed at first, then execute Let by order of SortNumber from small to large. But out of
blocks, it is not the execution order of Let command; it is a reference control sort. The rule is
that variables in smaller sort Let commands can refer the Let with larger sort number, but
larger can not refer smaller. Check example below, assuming the public variable pub_int1 is
8. (Details about pubic variable refer Publish command)

This logic set will return a result of integer 18. But if there is not sort numbers of Let
commands, the sum will never larger than 11, because when calculate sum, Witmate engine
will refer “pub_int1=0”. By firing another logic set, this problem can solute without Let sort
number feature. But this feature makes it easier to describe some normally used pattern.
Default sort number is 0. So all Let commands without sort number will be calculated at
first. Order of calculations with same sort number is not defined, by another words order
may be changed time by time. Serial sort number is not required.
Here is an extreme example below: assuming the input variable in_int1 is 28

The result is 38. Any expression which includes the variable with the same name of assigned
variable, as x=x+1, figures out the variable x in expression is an input variable or public
variable. So “in_int1<10” is true, and “Let in_int1=in_int1+10” in THEN block has higher
priority to load in_int1 in expression from input.
Variable name must be a legal name of SL, and its type must be defined by Def command.

LogicSet ls_let_test1
Def int in_int1
Let in_int1=6
If in_int1<10 Then Let in_int1=in_int1+10; Return in_int1
Else Return 0

LogicSet ls_let_test
Def int pub_int1, sum
:10: Let sum=pub_int1+10
:20: Let pub_int1=0
If sum>11 Then Publish pub_int1; Return sum

mate of your wit

Users’ Manual 41

Examples:
Let int1=12
:1:Let int2=12 + int1 * 10 / int1
:16:Let text1= Witmate engine .opt.Text$ToLowerCase (“OK”) + “!”

If Then

Syntax:
: SortNumber : { LogicName } If CompareExpression Then CommandsBlock End

Describe logics in SL. It is the most important command of SL.
SortNumber is optional. Witmate engine will check logics from smaller sort number to bigger.
Default value is 0. All logics without sort number will be checked at first. Order of
execution of logics with same sort number is not defined, by another words order may be
changed time by time. Serial sort number is not required
LogicName is optional. This is the name of logic; it may be same in one Logic Set. It must
follow the naming limits of SL. Name of logic is usable for:
l More readable SL: It is easier to figure out certain logic for logic management and

modifications by name, special for the case to communicate with peoples.
l Linking certain logic between SL and SLML: Because logic name is compiled into SLML,

it is clear which SL format is compiled into which SLML format by logic name.
l Identify logic in SLML: Identify certain logic in SLML for logic exchange or 3rd party

extensions by logic name.
l Trace the result of certain logic in Log: Logic name is outputted in Log, so it is useful to

trace the result of certain logic.
The order of SortNumber and LogicName appeared in SL is free, so both of examples below
are OK.

:12:{LogicA}If 1>v1 Then return 1
{LogicB}:2:If 2<v2 Then return 2

CompareExpression is the expression to describe the logics using compare operators and
functions.
CommandsBlock are commands that will execute when the CompareExpression is true. It
may include Let command, Publish command, Do command, and Return or Fire command.
One CommandsBlock only can include one Return or Fire command, and one Publish
command. The Let commands in CommandsBlock will over load the Let out of the If Then
command, if they assign a same name variable.
Execution order of commands in CommandsBlock is:
1. Let commands
2. Do commands

mate of your wit

Users’ Manual 42

3. Publish command
4. Return or Fire command
End is optional. For most cases it does not required. But check the example below:

If there is not the “End”, it is not clear that the “Let int2=12” is not a part of If Then
command.
Examples:

If 1>2 then Return “Never”
:12: If int1>12
Then
 Let int2=6*int1; Publish int2
 Fire LS_x(int1)

: 6 :{Always}If 2>1 then Return “Always”

Publish

Syntax:
Publish VariableNameList

This command only can be used in CommandsBlock of If Then command. And can only be
used one time in one CommandsBlock. There is one public area in which variables are public
among logic sets in one session. Publish command publish variables in VariableNameList
into this public area. Publish a same name variable will replace the previous one.
VariableNameList is variable names separated by comma.
Public variables are useful to pass variables cross logic sets.
Examples:

Publish pub_int1
Publish int1, text2, pub_int1

Do

Syntax:
: SortNumber : Do ComputeExpression

This command only can be used in CommandsBlock of If Then command. Calculate a
ComputeExpression. Because ComputeExpression may include any customized

If int1>10
Then
 Return “1”

End
Let int2=12
If …

mate of your wit

Users’ Manual 43

operator/functions, Do command can be used to call outside processes. Refer “How to call a
outside process” segment for details.

SortNumber is optional. Witmate engine will execute do commands from smaller sort
number to bigger. Default value is 0. So all Do without sort number will be executed at first.
Order of execution of Do commands with same sort number is not defined, by another words
order may be changed time by time. Serial sort number is not required.
Examples:

Do 1+2
:1:Do Stack$Push(in_stack, “1”)
: 19 :Do my.process.WriteDB(“the text written”)

Return/ReturnC

Syntax:
Return VarValueList

Or
ReturnC VarValueList

This command only can be used in CommandsBlock of If Then command. Can NOT be used
together with Fire command in one CommandsBlock . And can only be used one time in one
CommandsBlock.
Return results list.
VarValueList is optional, even an empty results list is not normal. It is values and variables
separated by comma. All variables must be defined by Def command.
Return command returns the value object instances of values or variables. This is a JSR-94
type return that uses Class and order of result instances to identify the results,
ReturnC command returns the instances of witmate.engine.core.kernel.elements.Constant
for values and witmate.core.kernel.elements.ConstantVariable for variables. As extended by
Witmate engine, this return type makes identify results easier by code, because the Witmate
engine .core.kernel.elements.Constant has a value type number, and the Witmate
engine .core.kernel.elements.ConstantVariable has the variable name.
Examples:

Return
Return 1, “a text”, 4.5, ‘2005/10/07’
Return var1, 12, var2

RetunC
ReturnC “a text”, 1
ReturnC var1, 18, var2

mate of your wit

Users’ Manual 44

Fire

Syntax:
Fire LogicSetName (VariableList)

This command only can be used in CommandsBlock of If Then command. Can NOT be used
together with Return/ReturnC command in one CommandsBlock . And can only be used one
time in one CommandsBlock.
Fire a logic set. Fire the same logic set that boots the Fire command is legal.
LogicSetName is required, and must be loaded into session previously at runtime. It must
follow the naming rule of Witmate engine.
VariableList is variables separated by comma. These variables must be defined by Def
command, and will be the inputs of the logic set fired. It is optional.

Examples:
Fire logic_set1()
Fire ls_2(var1, var2)

Else

Syntax:
Else CommandsBlock End

Set default CommandsBlock for one logic set. One logic set can only use one Else command.
Else command tells the Witmate engine: if all rules are failed, run these commands.
It is optional for logic set.
Usable Commands and process algorithm of CommandsBlock are totaling same as
CommandsBlock in If Then command.
End is optional, and has same usage as End in If Then command.
Examples:

Else Let va=1; Retrun va
Else

 Do myProcess()
 Fire ls1()

End

Cut

Syntax:
Cut originalFuntionName newFunctionName

Rename a function name to a new one. The name of “Cut” is come from the original usage
that cut a long java class name to a shorter name.
Both of originalFuntionName and newFunctionName required.

mate of your wit

Users’ Manual 45

Cut commands can be used at 2 situations:
l Shorter a long full java class name for operators/functions. To get clear, more readable

logic expression. For example:
Cut com.my.extend.operator.GetCustomerName GetCName

l Naming experts’ vocabulary. Details about experts’ vocabularies, refer “How to define
experts’ vocabularies” segment.
Cut com.my.extend.operator.WriteCustomerDB saveCustomerProfiles

Examples:
Cut com.my.extend.operator.GetCustomerName GetCName
Cut com.my.extend.operator.WriteCustomerDB saveCustomerProfiles

mate of your wit

Users’ Manual 46

Logic set Examples

This is the logic set for Stateful session test case of JSR-94 TCK:

The GetAttr function is the short name of Witmate.opt.GetAttribute operator of Witmate.opt
package in WitPeel.jar. Details about operators refer Java Doc of this package.

LogicSet RuleExecutionSet2
Def org.jcp.jsr94.tck.model.Customer Customer

 Def org.jcp.jsr94.tck.model.Invoice Invoice
 Def int credit_limit, amount
 Def str invoice_status
 Cut Witmate engine .jsr94tck.opt.SetCustomerCreditLimit setCreditLmt

Let credit_limit=GetAttr(Customer,"CreditLimit")

 Let amount=GetAttr(Invoice,"Amount")
 Let invoice_status=GetAttr(Invoice,"Status")

 If credit_limit>amount and invoice_status="unpaid"
 Then
 :1:Do setCreditLmt(Customer,credit_limit-amount)
 :2:Do SetAttr(Invoice,"Status","paid")
 Return Customer,Invoice

 Else

Return "Input may be wrong!"

mate of your wit

Users’ Manual 47

Simple Logic Markup Language (SLML)
SLML is another format of logics for computers processes or communications between hosts.
The explanations about SL commands are correct for SLML tags too. The best way to learn
SLML is write some SL logic sets and compile them to SLML.

SLML Format

First Look
This is a simple SLML:

Schema of SLML
Refer slml.xsd file.
SLML must begin with <?xml …, if the Wit-SL-InType property is not set, when calling engine
API. Details about Wit-SL-InType property refer WitME API segment.

SLML Parser

SLML parser load logics from SLML format into Witmate engine. At same time, SLML
parser optimizes the logics for runtime performance.
Optimize logic set
SLML parser optimizes logic set by these approaches:
l Ignore constant comparisons in complex comparison

<?xml version="1.0"?>
<slml>

 <lset id="ASet">
 <let n="Y" t="int">

 <atom opt="Witmate engine .opt.Math$AddInt">
 <con t="int">1</con>
 <var t="int" n="X" />

 </atom>
 </let>

 <lgc>
 <if>
 <and>

 <atom opt="Witmate engine .opt.Logic$True" />
 </and>
 </if>

 <then>
 <let t="int" n="X">15</let>
 <rtn>

 <var n="Y" t="int" />
 </rtn>

 </then>
 </lgc>

 </lset>
</slml>

mate of your wit

Users’ Manual 48

l Integrate same comparisons leveraging isSeriary method and isDynamic method of
operators

mate of your wit

Users’ Manual 49

WitDebugger
WitDebugger is a text console based debugger of Witmate engine . As an extension to jdb the
Java debugger shipping with JDK, It has these advantaged features:
l Support both of local JVM and remote JVM debug. This makes the debug on the

Witmate engine running on mobile/small devices possible.
l Seamless integration with Java code debug offers the seamless tracing from Witmate

engine code into customized operations code.
l Small footprint makes it to be a usable tool in real world environment debug, the

resource mostly are limited for debuggers in real world environments.
Usages

WitDebugger is extended from jdb, so most of usages of WitDebugger are same as jdb.
Example start command of WitDebugger to debug Witmate engine on local JVM

Example start command of WitDebugger to debug Witmate engine on remote JVM

For more details, refer the jdb document in your JDK.

Commands

All commands which are offered by jdb are usable in WitDebugger. And WitDebugger
extends these commands to support Witmate engine debug.
wstop
List and set breakpoints at commands besides of the Let command. It has several usages as
below:
l wstop

List all Witmate breakpoints.
l wstop at <logic set name>:<command id>[@<uri>]

Stop at a command. Uri is optional. WitDebugger will stop at all commands that are
figured out, without checking the uri that LogicSet is loaded, if the uri isn’t set.
The command id normally is line number in SL or the cid attribute in SLML.

wstop at test_logicset1:12
wstop at test_logicset1:12@the.special.uri

witdb.bat -sourcepath your¥Witmate engine ¥SL¥src -connect
com.sun.jdi.SocketAttach:hostname=localhost,port=5000

witdb.bat -sourcepath your¥Witmate engine ¥SL¥src -sourcepath -classpath
your¥WitSDK¥lib¥witcore-all.jar;and¥other¥Witmate engine ¥jars¥your¥app¥needs
your.main.class.to.call.Witmate engine

mate of your wit

Users’ Manual 50

l wstop inthen <logic set name>[@<uri>]
Stop before any then/else block is fired in the logic set figured out.

l wstop inset <logic set name>[@<uri>]
Stop when the logic set is fired.

wclear
List/Remove the breakpoints. To different types of breakpoints set by wstop commands, clear
command has these usages:
l wclear

List all Witmate engine breakpoints.
l wclear at <logic set name>:<command id>[@<uri>]

Remove the stop at break point.
l wclear inthen <logic set name>[@<uri>]

Remove the stop inthen breakpoint.
l wclear inset <logic set name>[@<uri>]

Remove the stop inset breakpoint.

wlocals
List all variables which can be accessed, when stopped at a Witmate breakpoint.

wlist
List SL source codes. At the first time to run this command, it takes some time, according to
the total size of your SL source codes, to parse source codes. The folders of SL code are set by
the parameter ‘-sourcepath’ of WitDebugger or set by ‘use’ command. The SL files must has
extension name ‘.sl’.

wwhere
Dump the current firing tracing. At the first time to run this command, it takes some time,
according to the total size of your SL source codes, to parse source codes.This command is
usable, even the current breakpoint is out of Witmate engine logic sets. This offers the way
to know how Witmate engine goes into your code mostly which is customized operations you
wrote.

wstop inset test_logicset1
wstop inset test_logicset1@the.special.uri

wstop inthen test_logicset1
wstop inthen test_logicset1@the.special.uri

mate of your wit

Users’ Manual 51

wstep
Step to next Witmate engine command.

Typical using scenario

There is a typical scenario to use WitDebugger
1. Boot WitDebugger

2. Set breakpoints

3. Run Witmate engine, and stop at a breakpoint.

4. Using wlocals, wwhere and wlist commands to debug.
5. Using wstep, wstop and ‘cont’ to run into another location
6. Run to end of your application by ‘cont’
7. Exit WitDebugger by ’exit’ command.

run
WitBreakpoint hit: …

wstop at test_logicset1:12
wstop inthen test_logicset2@the.special.uri

witdb.bat -sourcepath your¥Witmate engine ¥SL¥src -sourcepath -classpath
your¥WitSDK¥lib¥witcore-all.jar;and¥other¥Witmate engine ¥jars¥your¥app¥needs
your.main.class.to.call.Witmate engine

mate of your wit

Users’ Manual 52

How to
This chapter explains the solutions for special situations.

System

How to open/close cache

There are 2 ways to open/close cache.
l Set in logics definition.
It is possible to control cache in SL and SLML.
CacheLevel option of LogicSet command in SL controls and clvl attribute of lset tag in SLML
control cache status.1 will open cache and 0 will close.
SL example:

SLML example:

l Set null cache implementation
There is a null cache implementation in Core Engine. The null cache just is an empty
implementation of cache interface. Set witmate.core.LevelCache configuration key of
Witmate engine configurations to witmate.core.kernel.interfaces.NullLevelCache will close
cache and to witmate.core.kernel.cache.OneLevelCache will open cache. Refering
Configuration segment to know more about Witmate engine configuration.
Because all methods of null cache are just a return without any process, it is faster than the
way to set in logics definition. And null cache is included in Core Engine, so you need not to
buy the license of cache.

How to define customized operators/functions

Both of operators and functions are same in Witmate engine, and dealt as operators.
Customized operator class needs to implement interface Witmate.opt.Operator.
Key method is “go”, and all process should be coded in this method.

<!-- Open cache -->
<lset n=”LS01” clvl=”1”…

<!-- Close cache -->
<lset n=”LS01” clvl=”0”…

Open cache
LogicSet LS01 CacheLevel 1 …

Close cache
LogicSet LS02 CacheLevel 0 …

mate of your wit

Users’ Manual 53

The method isSeriary tells Witmate engine whether your operator is seriary. This method
will be called by SLML parser to optimize logics. Changing the parameters order of Seriary
operators will change the result of operator, for example "=" is not seriary, should return
false in isSeriary method, and ">" is serairy, should return true.
The method isDynamic tells Witmate engine whether the result of your operator is changed
even input is same.
Points that pay attention to define customized operators:
1. The “go” method must be thread-safe.
2. The class of operator must can be generated through Class.newInstance() method.

How to call a outside process

Outside process means some application process out of Witmate engine, as sending a e-mail,
access database, etc. There are several ways to call outside processes
Using do command
1. Create a customized operator whose go method do the outside process.
2. Add do command with this operator and its operands
3. Using sort number of do command to control sort of execution.
* Do commands will be executed before publish commands.

Using variable computation
1. Create a customized operator whose go method do the outside process.
2. Write a Let command whose expression uses this operator.
3. Add the variable name of the Let into publish, fire or return parameters list in then

block, or compare expression for logic compares.
4. If there are more then one processes, write one Let for each process.
5. The order of variable name of Let in fire or return parameters list is the process order.
* Only these operators whose variable name of Let is appear in parameters list of fire, return
or compare expressions will be called.

Pay attention:
1. isDynamic of customized operators should be true to enforce Witmate engine not to cache
the result of process.
2. isSeriary of customized operators should be true to make the mistake of wrong order of
parameters can be found easier

mate of your wit

Users’ Manual 54

SL & SLML

How to define experts’ vocabularies

There are 2 approaches to define vocabularies in SL:
l Variables naming
Define variables names by experts’ vocabularies rather than IT words by Def command. For
example, define a variable as “monthly_cost_sum”, not “cost_sum_filed_data”.
And it is possible to bridge IT world and experts’ world using Let command, as:

l Operator naming
Naming a method to an experts’ vocabulary by Cut command, as:

How to use SLML validation

Although Witmate engine SLML parser checks SLML syntax and log out all mistakes,
SLML is defined by a XML schema at http://www.witmate.com/slml, so it’s possible to
validate SLML with XML validating. For time costing of validation, the default status of
validation is closed. The steps to open validation:
1. Confirm your XML parser supports validation. If it does not, Witmate engine will skip

the validation.
2. There are 2 approaches for developer and administrator:

l Set Wit-SL-InType property to “4” when call createRuleExecutionSet/
createRuleExecutionSets method to create rule set(s) in your code. This step gives
programmers to control validation when developing.

l Set VALIDATE_SLML configuration key to 1. The key of this configuration in
witmate.properties is “witmate.core.SLMLValidating”. This step gives system
administrators the possibility to open/close validation after system deployment.

Def int cost_sum_filed_data, monthly_cost_sum
Let monthly_cost_sum= cost_sum_filed_data

If monthly_cost_sum>…

Cut com.my.lib.opt.ReadCostData GetCost

If GetCost(…

mate of your wit

Users’ Manual 55

End user tools

How to use sl2slml and slml2ws tools

Sl2slml and slml2ws are two SL/SLML/WitStream translating open source tools.
Use this command to translate SL to SLML:

And this command to translate SLML to WitStream:

xxx is the version number of Witmate engine to use.

Performance tuning

How to get better logic optimization

Follow these guild lines below to gain a better logic optimization result by SLML parser.
l Use same expressions for same logics. For example, use “varA>12” any where in a logic

set rather than use both of “varA>12” and “12<varA”.
l Define non seriary operators as possible as you can.

How to save the log4j execution time

In most deployed system, the log isn’t needed. Even closed log by log4j settings, the log4j
code still do some checks. To save this time, Witmate engine offers a null-logger jar that
implements log4j interface with do nothing codes. To switch to null logger, just uses
null-logger jar to replace logc4j jar or log4j2me jar that is used by Witmate engine.

How to use other languages in logic

Too use other languages, the logic contents must be encoded by UTF-8.

java –cp slml2ws.xxx.jar;slmlparser.xxx.jar;wittools.xxx.jar;witcore-all.xxx.jar;log4j-1.2.9.jar
witmate.tools.SLML2WS <input SLML file name> <output Wit Stream file name>

java -cp sl2slml.xxx.jar;wittools.xxx.jar;witcore-all.xxx.jar;slcompiler.xxx.jar;log4j-1.2.9.jar
witmate.tools.SL2SLML <input SL file name> <output SLML file name>

