
mate of your wit

Case Study www.witmate.com 1

Logic Engine case study – Expense Application System
(contact@witmate.com)

Abstract
This article explains the approaches and advantages of Logic Engine based system
design and implementation with the case of an expense application system. We use a
java Logic Engine named Witmate (http://www.witmate.com/) as the implementation
tool. We ignored many details of this case to focus on the central idea of Logic Engine.

The Case
A company with hundreds employees wants to develop an expense application IT
system replacing the current manual operations. Employees apply their expense of one
year at the end of each year by these steps:
1. Employees fill out the application form, and send it to their department

accountants.
2. Department accountants check these applications whether match the expense plan

that is decided at the beginning of every year. The expense plan includes total
expense number of whole department and limited numbers of different positions
employees, and balancing logics. The balancing logics express what is the
applicable balances among the items of expenses, for example:
l The travel expense of one employee can not over $3000 in one year
l If one employee’s over sea calls fee over 50% of her total expense, her travel

expense can not over $2000
Department accountants will reject forms that are over the numbers or do not
match the balancing logics to employees to refill, and report all fixed and correct
forms to accountants of company.

3. Company accountants check all application forms of departments according to
company level numbers and balancing logics
Any wrong forms will be rejected.

As any account systems, the numbers and balancing logics are always changing from
year to year.

mate of your wit

Case Study www.witmate.com 2

This is the system diagram:

The major targets that the company develops the IT system are:
l Automatic the operation process to speed up operations.
l Decrease mistakes that are caused by year to year changes of balancing logics and

government requirements.
l Decrease rejections to save time and cost.
IT infra status of this company is that most of the employees can get chance to use a
client terminal. But the types of these terminals are very multiple, from Smart phones,
PDAs, PCs to UNIX workstations.

Company
Accountants

Department
Accountants

Employees

Apply Reject

Apply Reject

Apply Reject

mate of your wit

Case Study www.witmate.com 3

System design
According to the multiple terminal types of customer’s IT infra, we choose Java platform
as the basic platform to develop most applications of this system.
Jumped over some steps, we got the basic system architecture:

To decrease mistakes caused by plan changes, an expense plan management console is
required to control all plans centrally. The console also has the functionality to
broadcast plans defined to sub systems.
To decrease rejections, a simulator is deployed into terminals. Employees will use it to
simulate their applications on their terminal before actual application.
The next step of a logic engine based system design is clarifying what parts of system
should be done by programmers and what parts can be managed by experts leveraging
logic engine. In this case, experts can do:
l Expense plans definition and management
l Inputs and outputs definitions of expense plans
And programmers do:
l Sub systems implementation

Company
Expense plan

Departments
Expense plan

Company Application
sub system

Departments
Application sub system

Intranet/VPN

Internet/Mobile/
Wireless

Terminal Simulator
and Application tool

Expense Plan
management

console

Expense plan
For Simulator

Application
Control Flow

Expense plan
Data Flow

mate of your wit

Case Study www.witmate.com 4

l Database design and implementation
l Communication through Networks
Company expense plan, department expense plan and expense plan for simulator are
defined by logic description languages which are saved in Relation Databases, files and
Mobile device memories. So logic language format must fit for different devices and
storages.
Expense plan need to be broadcast to sub systems and terminals through LAN, VPN
and mobile/wireless networks.
General workflow of this system is:
1. Expense experts define expense plans and broadcast plans to sub systems and

terminals by expense management console.
2. Employees input their expense numbers and simulate the application to check

whether there are wrong numbers in their applications on their own terminals.
3. Employees apply their expenses to department sub system
4. Department accountants check their department employees’ applications according

to department expense plans, and apply summed applications to company sub
system with Departments Application sub system.

5. Company accountants check all applications according to company expense plan,
and get report of expense for company this year.

After collected requirements and got the basic design architecture, let’s go to next step
to implement this system with Logic engine Witmate.

mate of your wit

Case Study www.witmate.com 5

System implementation
We use Witmate logic engine to implement this system, because Witmate is the only one
java logic engine executable from j2me to j2se/j2ee to support multiple types of devices
of this system, and the multiple logic formats feature of Witmate is the best solution of
logics definition and broadcast through multiple type networks.
Expense plan management console is implemented as 2 editions. The first and simpler
one is a Simple Language (SL) editor based edition. Experts will use a text editor to
write and modify SL logic definition files. The second and more complex edition is a GUI
based logic management tool and the generation of the GUI tool is logic definitions
expressed with Simple Logic Markup Language (SLML). The logic definitions created
by experts need to be broadcast to sub systems and employee terminals. Because the
company and departments sub system are typical enterprise system, we use Web
Services as the integration approach. Logic definitions are broadcasted to sub systems
with SLML through Web Services end points. Going to employee terminals world, there
are many types of employee terminals, so we use SLML for powerful terminals that can
install Web Services and use WitStream (WS), a text based logic format, for small deices
as smart phones and PDAs. All functional components of management console use
Witmate engine through JSR94 standard interface. To implement management console,
we need a Witmate engine core with Jsr94 cover, SL compiler, SLML parser and
WitStream writer.
Company and departments application sub systems are connected with console by Web
services through Intranet or VPN. They need to receive plans by SLML, so a Witmate
engine core with Jsr94 cover, SLML parser is required for functional implementation.
The repository of plans of sub systems is Relation databases, and save plans as
WitStream format, so WS reader and writer are required to save and retrieve plans.
Terminals have tow types of structures. For powerful terminals, as PC or UNIX
workstations, the Witmate components used are same as company/department sub
systems, but plans are saved into files with WitStream format. For thin terminals, as
PDA or smart phone, we just need a basic system of Witmate, a Witmate engine core
with WS reader, to implement terminals tools, and save plans into memory of devices
with WitStream.

mate of your wit

Case Study www.witmate.com 6

This is the system implementation with Witmate logic engine:

Expense Plan
management console

Core EngineCore Engine

Company Application sub system

Core EngineCore Engine

Company
Expense plan
(WitStream)

Departments
Expense plan
(WitStream)

Departments Application sub
system

Core EngineCore Engine

Powerful Terminals

Core EngineCore Engine

Core EngineCore Engine

Thin Terminals

Files
(WitStream)

SLML

WS

WS

WS

SLML

SLML WS

Memory
(WitStream)

WS

mate of your wit

Case Study www.witmate.com 7

Let’s take a look at how the plans are defined with SL. As example, This is simple logics
of a department expense plan:

Even without more comments, logics of these SL are clear. Witmate will be called from
the logic set “Check_sum” with input variables, travel_cost/over_sea_calls_cost/
books_cost, and if sum is OK, “Check_details” logic set will be booted. The Result is a
Boolean value to figure out whether process successfully, and a reason message about
what is wrong. The reason we use tow logic sets is that the sum and details logics may
become more complex year by year, and are managed by two standalone expert teams to
be changed separately at different time.
Because of JSR94 compatible, and Witmate core engine exposes a JSR94 like API in
j2me platform, the code to load logics into Witmate, and boot logic match is same as any
JSR-94 sample code. We ignored this code here.
As an example to show how easy to deal with changes, department users wants to know
whether an application are sent successfully to company accountants. Then we may
change “Check_details” logic set like:

LogicSet Check_details
 …
If not apply(sum) Then return false, “Fail to send application”
Else return true, “Sent successfully”

LogicSet Check_sum
Def real sum_limit, sum

 #Variables below are input variable.
Def real travel_cost, over_sea_calls_cost, books_cost
Let sum_limit=10000 #May be changed year to year.
Let sum= travel_cost + over_sea_calls_cost + books_cost

 If sum > sum_limit then return false, “Sum over limit”
If sum <= 0 then return false, “Sum is less than 0”
Else Fire Check_details(sum, travel_cost, over_sea_calls_cost, books_cost)

LogicSet Check_details
 Def real sum, travel_cost, over_sea_calls_cost, books_cost
If over_sea_calls_cost/sum > 0.3 And travel_cost > 3000
Then Return false, “Broke over sea call and travel balance rule”

 If books_cost > 1000 Then Return false, “Bought too much books”
Else Do apply(sum); Return true, “Application done”

mate of your wit

Case Study www.witmate.com 8

This is a part of SLML compiled from SL logics as a brief looking.

This is the major part of Logic Engine based implementation approach.

<?xml version="1.0"?>
<slml>
<!--SLML Generated by SLCompiler[20051110105913] -->
<!-- LogicSet -->

<lset id="Check_sum">
<let n="sum_limit" t="dbl">

<con t="int" s="1">10000</con>
</let>
<let n="sum" t="dbl">

<atom opt="witmate.opt.Math$AddDouble" s="1">
<var n="travel_cost" t="dbl" s="1" />
<var n="over_sea_calls_cost" t="dbl" s="2" />
<var n="books_cost" t="dbl" s="3" />

</atom>
</let>
<lgc>

<if>
<and>

<atom opt="witmate.opt.Math$GreaterDouble" s="1">
 <var n="sum" t="dbl" s="1" />

 <var n="sum_limit" t="dbl" s="2" />
</atom>

</and>
</if>
<then>

<rtn v="1">
<con t="bool" s="1">false</con>
<con t="str" s="2">

<![CDATA[Sum over limit]]>
</con>

</rtn>
</then>

</lgc>
<lgc>

<if>
<and>

<atom opt="witmate.opt.Math$LessEqualsDouble" s="1">
<var n="sum" t="dbl" s="1" />

 <con t="int" s="2">0</con>
</atom>

</and>
</if>
<then>

<rtn v="1">
<con t="bool" s="1">false</con>
<con t="str" s="2">

<![CDATA[Sum is less than 0]]>
</con>

</rtn>
</then>

</lgc>
<else>

<fire lset="Check_details">
<var t="dbl" n="sum" s="1" />
<var t="dbl" n="travel_cost" s="2" />
<var t="dbl" n="over_sea_calls_cost" s="3" />
<var t="dbl" n="books_cost" s="4" />

</fire>
</else>

</lset>
…

mate of your wit

Case Study www.witmate.com 9

Conclusion
Through this case study, we know the common progress to design, implement a system
with Logic Engine based approach. The basic idea of Logic Engine based design and
implementation is that let the best people to do the best woks. Developers are
responsible for system architecture, data repository and input/output process of Logic
Engine, definitions of the system logics are released to experts.
Leveraging the advantaged features of Witmate, we successfully developed and
deployed a Logic engine based system into a multiple devices type and multiple
networks environment.
We also show a simple example about how easy to deal with changes without any
recoding by Logic Engine approach.

References
[1] Witmate users manual: http://www.witmate.com/document.html
[2] JSR-94: http://www.jcp.org/aboutJava/communityprocess/review/jsr094/

